

Published on Web 07/14/2009

Biosynthesis of Salinosporamides from α , β -Unsaturated Fatty Acids: Implications for Extending Polyketide Synthase Diversity

Yuan Liu,[†] Christopher Hazzard,[§] Alessandra S. Eustáquio,[†] Kevin A. Reynolds,[§] and

Bradley S. Moore*,^{†,‡}

Scripps Institution of Oceanography and the, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0204, and Department of Chemistry, Portland State University, Portland, Oregon 97207-0751

Received May 29, 2009; E-mail: bsmoore@ucsd.edu

The salinosporamides comprise a natural product family of potent anticancer agents produced by the marine bacterium Salinispora *tropica*. This group of densely functionalized β -lactone- γ -lactam proteasome inhibitors is largely distinguished through structural differences at C-2 bearing methyl, ethyl, chloroethyl, and propyl substituents per salinosporamides D (1), B (2), A (3), and E (4), respectively (Scheme 1).¹⁻³ The recent discovery of the related metabolite cinnabaramide A (5) from a terrestrial streptomycete,⁴ which instead harbors a C-2 hexyl chain, further extends the natural salinosporamide structural family. We recently reported that salinosporamides A and B are biosynthetic products derived from an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) pathway initiated by the chain elongation of acetyl-S-ACP by chloroethylmalonyl-CoA or ethylmalonyl-CoA,5,6 respectively, followed by the nonproteinogenic amino acid cyclohexenylalanine (Scheme 1).7 The selection of the PKS extender unit is controlled by the acyltransferase domain AT1 from the hexadomained SalA synthase. Herein we report that salinosporamides D and E are respectively accessed from methylmalonyl-CoA and propylmalonyl-CoA, the latter of which is a newly described PKS extender unit that belongs to a growing family of PKS substrates derived from α,β -unsaturated fatty acids.

Based on the biosynthetic assembly of salinosporamide B from a butyrate building block via ethylmalonyl-CoA,^{5,6} we reasoned that the methyl analogue salinosporamide D (1) would be similarly assembled from a propionate unit via the common PKS substrate (2S)-methylmalonyl-CoA (Scheme 1). We explored this assumption by administering [1-¹³C]propionate to the *S. tropica salL*-deficient mutant, which is specifically unable to synthesize the chlorinated salinosporamide A as the major product of the *sal* pathway due to inactivated 5'-chloro-5'-deoxyadenosine synthase SalL.⁸ Isolation and characterization of the resultant salinosporamide D by NMR revealed the specific ¹³C-enrichment (5%) at C-1, thereby confirming its assembly from propionate.

We next turned our attention to the propyl analogue salinosporamide E (4), which would presumably derive from a pentanoate building block. If so, this would imply the prospect of a new PKS building block, namely propylmalonyl-CoA. Salinosporamide E was similarly isolated from the $[1-^{13}C]$ propionate feeding experiment, and NMR analysis confirmed ^{13}C -enrichment (40%) at C-12, thereby suggesting an origin from pentanoate derived from propionate and acetate precursors (Scheme 1). While the administration of pentanoic acid to the *S. tropica salL*-deficient mutant resulted in a significant increase (~500%) in salinosporamide E titers, unsaturated *trans*-2-pentenoic acid had a much greater effect in enhancing its production at ~1500%

 ${\it Scheme 1.}$ Biosynthesis of salinosporamide A (3), Its Analogues, and Their Substituted Malonyl-CoA PKS Building Blocks (Boxed)^a

^{*a*} Abbreviations: ACP, acyl carrier protein; KS, ketosynthase; AT, acyltransferase; C, condensing domain; A, adenylation domain; PCP, peptidyl carrier protein.

(Figure 1). These observations suggested that the C_5 substrate is limiting and that the α , β -unsaturated carboxylic acid is a more advanced biosynthetic intermediate.

The recent functional revision of crotonyl-CoA reductase (CCR) as a carboxylase that catalyzes the reductive carboxylation of crotonyl-CoA to (2S)-ethylmalonyl-CoA⁹ suggests the possibility of an analogous pathway to (2S)-propylmalonyl-CoA in *S. tropica* from 2-pentenyl-CoA (Scheme 1). Inspection of the complete genome sequence of *S. tropica* CNB-440¹⁰ revealed two CCR-encoding genes. We previously inactivated each by PCR-targeted mutagenesis and showed that Strop_3612 encodes a primary CCR involved in salinosporamide B biosynthesis while the homologue *salG* codes for a novel chlorocrotonyl-CoA reductase/carboxylase associated with salinosporamide A biosynthesis.⁶ Upon further analysis of the *S. tropica* CCR mutants, we observed that production

 [†] Scripps Institution of Oceanography, University of California at San Diego.
 [‡] Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego.
 [§] Portland State University.

of salinosporamide E was exclusively lost in the salG knockout mutant whereas it was maintained in the Strop_3612 mutant (Figure 1). Hence, this in vivo experiment suggests that SalG has relaxed substrate specificity toward 2-alkenyl-CoAs and is able to also reductively carboxylate 2-pentenyl-CoA in addition to 4-chlorocrotonyl-CoA as previously reported.⁶ In vitro analysis of recombinant octahistidyl-tagged SalG confirmed that it is able to reductively carboxylate 2-pentenyl-CoA (k_{cat} 25.5 ± 0.7 min⁻¹; K_m $4.3 \pm 0.5 \,\mu\text{M}$) at comparable efficiency to 4-chlorocrotonyl-CoA $(k_{\rm cat} 23.1 \pm 2.6 \text{ min}^{-1}; K_{\rm m} 4.4 \pm 1.8 \,\mu\text{M})$, which is more efficient than that with crotonyl-CoA (k_{cat} 15.4 \pm 0.9 min⁻¹; K_{m} 20.7 \pm 4.2 μ M).⁶ Presumably, the CCR encoded by Strop_3612 is more specific toward crotonyl-CoA, although attempts to verify this hypothesis were unsuccessful due to issues with soluble expression of the protein. However, we did observe in parallel experiments that the CCR originally isolated from *Streptomyces collinus*¹¹ uses crotonyl-CoA and not 2-pentenyl-CoA as a substrate for reductive carboxylation. Thus this CCR and SalG have markedly different substrate specificities yet likely have the same 2S-stereochemical outcome as in other homologous CCRs and medium-chain dehydrogenases/reductases.9

Given the relaxed in vitro and in vivo substrate specificity of SalG, we explored other substrates including 4-bromo- and 4-fluorocrotonate, which are anticipated substrates of natural bromosalinosporamide $(6)^3$ and engineered fluorosalinosporamide (7),¹² respectively (Scheme 1). Administration of the 4-halocrotonic acids to the S. tropica salLdeficient mutant resulted in the production of 6 and 7 as anticipated (Figure 1), thereby establishing bromoethylmalonyl-CoA and fluoroethylmalonyl-CoA as additional PKS extender units unique to the

Figure 1. HPLC analysis at 210 nm of organic fractions of (A) wild-type S. tropica, (B) S. tropica salL⁻ mutant, (C) S. tropica Strop_3612⁻ mutant, (D) S. tropica salG⁻ mutant, (E) S. tropica salL⁻ + 0.8 mM pentanoic acid, (F) S. tropica salL⁻ + 0.8 mM trans-2-pentenoic acid, (G) S. tropica $salL^{-} + 0.12 \text{ mM}$ 4-bromocrotonoic acid, and (H) S. tropica $salL^{-} + 0.15$ mM 4-fluorocrotonoic acid. Salinosporamide analogues 1-4 and 6-7 are noted, while derivatives of 3 are marked with an asterisk.

salinosporamide biosynthetic pathway. While the 4-halo analogues were accepted as alternative in vivo substrates,¹³ elongated 2-alkenoates $(C_6 \text{ to } C_8)$ were not converted into new *sal* products as observed by HPLC-MS analysis. The capacity of a CCR homologue to preferentially accommodate a longer chain 2-alkenyl-CoA, however, is strongly suggestive in the biosynthesis of cinnabaramide A (5),⁴ which based on the salinosporamide biosynthetic model would incorporate (2S)hexylmalonyl-CoA derived from the reductive carboxylation of 2-octenyl-CoA.

In conclusion, we discovered the new PKS extender unit propylmalonyl-CoA, in the context of salinosporamide E biosynthesis. It is rare for PKSs to incorporate pentyl building blocks in their polyketide products; to our knowledge only the macrolide immunosuppressant FK506,¹⁴ which carries an allyl side chain, and the acyl depsipeptide dentigerumycin¹⁵ may similarly incorporate propylmalonyl-CoA units. This discovery exemplifies a new strategy in PKS extender unit biochemistry in which α,β -unsaturated acyl-CoA thioesters are reductively carboxylated¹⁶ and furthermore suggests that CCR protein engineering may readily afford unnatural malonyl-CoA precursors for the bioengineering of novel polyketide molecules.

Acknowledgment. Dedicated to Prof. Heinz G. Floss of the University of Washington on the occasion of his 75th birthday for his pioneering work on natural product biosynthesis. We gratefully acknowledge valuable discussions with Prof. Yoshihisa Kobayashi (UCSD) and financial support provided by the National Institutes of Health (CA127622 to B.S.M. and AI51629 to K.A.R.) and the Life Sciences Research Foundation via a Tularik postdoctoral fellowship to A.S.E.

Supporting Information Available: Experimental procedures, NMR data, and SalG kinetic data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. *Angew. Chem., Int. Ed.* **2003**, *115*, 369–371.
 Williams, P. G.; Buchanan, G. O.; Feling, R. H.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. *J. Org. Chem.* **2005**, *70*, 6196–6203.
 Reed, K. A.; Manam, R. R.; Mitchell, S. S.; Xu, J.; Teisan, S.; Chao, T. H.; Departed Versity Conference on Control of Control
- Deyanat-Yazdi, G.; Neuteboom, S. T.; Lam, K. S.; Potts, B. C. J. Nat. Prod. 2007, 70, 269-276.
- (4) Stadler, M.; Bitzer, J.; Mayer-Bartschmid, A.; Müller, H.; Benet-Buchholz, J.; Gantner, F.; Tichy, H.-V.; Reinemer, P.; Baco, K. B. J. Nat. Prod. 2007, 70. 246-252
- (5) Beer, L. L.; Moore, B. S. Org. Lett. 2007, 9, 845-848.
- (6) Eusténeiro, A. S.; McGlinchey, R. P.; Liu, Y.; Hazzard, C.; Beer, L. L.; Florova, G.; Alhamadsheh, M. M.; Lechner, A.; Kale, A. J.; Kobayashi, Y.; Reynolds, K. A.; Moore, B. S. Proc. Natl. Acad. Sci. U.S.A., doi: 10.1073/pnas.0901237106.
- McGlinchey, R. P.; Nett, M.; Eustáquio, A. S.; Asolkar, R. N.; Fenical, W.; Moore, B. S. J. Am. Chem. Soc. 2008, 130, 7822–7823.
 Eustáquio, A. S.; Pojer, F.; Noel, J. P.; Moore, B. S. Nat. Chem. Biol. 2009, 1400-71.
- 2008, 4, 69-74.
- Erb, T. J.; Berg, I. A.; Brecht, V.; Müller, M.; Fuchs, G.; Alber, B. E. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10631-10636. Erb, T. J.; Brecht, V.; Fuchs, G.; Müller, M.; Alber, B. E. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8877-8882
- (10) Udwary, D. W.; Zeigler, L.; Asolkar, R. N.; Singan, V.; Lapidus, A.; Fenical, W.; Jensen, P. R.; Moore, B. S. *Proc. Natl. Acad. Sci. U.S.A.* 2007, *104*, 10376–10381. Penn, K.; Jenkins, C.; Nett, M.; Udwary, D. W.; Gontang, E. A.; McGlinchey, R. P.; Foster, B.; Lapidus, A.; Podell, S.; Allen, E. E.; Moore, B. S.; Jensen, P. R. *ISME J.* 2009, doi: 10.1038/ismej.2009.58.
- (11) Wallace, K. K.; Bao, Z. Y.; Dai, H.; Digate, R.; Schuler, G.; Speedie, M. K.; Reynolds, K. A. Eur. J. Biochem. 1995, 233, 954-962
- (12) Eustáquio, A. S.; Moore, B. S. Angew. Chem., Int. Ed. 2008, 47, 3936-3938. (13) Administration of 4-bromocrotonic acid to the S. tropica salL⁻ mutant also provided the chlorinated 3 (Figure 1, trace G) as a minor product. Its production presumably derives from the transchlorination of the substrate
- in the seawater-based A1 medium. (14) Motamedi, H.; Shafiee, A. Eur. J. Biochem. 1998, 256, 528-534.
- (15) Oh, D.-C.; Poulsen, M.; Currie, C. R.; Clardy, J. Nat. Chem. Biol. 2009, 5,
- 391-393.
- (16) Chan, Y. A.; Podevels, A. M.; Kevany, B. M.; Thomas, M. G. Nat. Prod. Rep. 2009, 26, 90-114.

JA9042824